
Embedded Systems Design and Modeling 1

Embedded Systems 
Design and Modeling

Chapter 13
Invariants and Temporal Logic



Embedded Systems Design and Modeling

Correctness Definition
 Question: when is a design of a system “correct”?
 Answer: a design is correct when it meets its 

specification (requirements) in its operating 
environment

 Quotation: “A design without specification cannot 
be right or wrong, it can only be surprising!”

 To verify correctness, simply running a few tests 
is not enough!

 Many embedded systems are deployed in safety-
critical applications (avionics, automotive, 
medical, …) and require rigorous verification

2



Embedded Systems Design and Modeling

Examples From History
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Basic Definitions
 Specification:

 A precise mathematical statement of the 
design objective (desired properties of the 
system)

 Verification:
 Does the designed system achieve its 

objectives in the operating environment?

 Controller Synthesis:
 Given an incomplete design, a strategy to 

complete the system so that it achieves its 
objectives in the operating environment
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Model-Based Design & Verification

5

 Requires a precise and unambiguous way 
to write models and specifications so that 
an algorithm can process it
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Natural Language Deficiency
 Can natural languages satisfy this requirement?
 Generally no, due to their inherent ambiguities!
 Example: Specification of the SpaceWire Protocol 

(European Space Agency standard)
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Note: The exact timing of this 
state is not specified clearly.
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Another Example
 Recall our previous example of 

mutual exclusion in a 
multithread system

 States and/or transitions 
represent atomic instructions

 Sample possible specifications 
described in a natural 
language:
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 The 2-threaded program should never be in state 
(C1,C2)

 Thread 1 must eventually reach D1 and thread 2 
must eventually reach D2
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Motivational Observations
 Need a formal (mathematical) way (language) to 

specify the system.
 Various “logics” (mathematical languages) have 

been proposed to address this need.
 A mathematical specification only includes 

properties that the system must or must not 
have.

 It requires human judgment to decide whether 
that specification constitutes “correctness”.

 Getting the specification right is often as hard as 
getting the design right!
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Temporal Logic
 A precise mathematical description to 

express properties of a system over time
 E.g., Behavior of an FSM or Hybrid System
 “Temporal” emphasizes the time aspect

 Many flavors of temporal logic:
 Propositional temporal logic
 Linear temporal logic
 Real-time temporal logic, etc.

 ACM Turing Award was given for the idea 
of using temporal logic for specification
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Propositional Temporal Logic
 Proposition: a statement about the inputs, 

outputs, or states of a system
 Can be seen as expressions with true or 

false values
 Atomic (smallest) proposition: fine-

grained statements with as few as one 
single input or output or state

 A propositional logic formula (or simply a 
proposition) is a more elaborate 
combination of atomic propositions
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Atomic Propositions Example
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Propositions Example
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Execution Traces
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Linear Temporal Logic
 LTL formula: applies to an entire trace instead of just one 

single element:
 q0, q1, q2, …

 If p is a proposition, then by definition, we say that LTL 
formula Φ = p holds for the trace q0, q1, q2, … if and only 
if p is true for q0.

 This may seem odd, but will provide temporal logic 
operators ways to reason about the entire trace.

 By convention, LTL formulas are denoted as Φ, Φ1, Φ2, etc. 
and propositions as p, p1, p2, etc.

 Given a state machine M and an LTL formula Φ, we say that 
Φ holds for M if Φ holds for all possible traces of M.
 This typically requires considering all possible input combinations
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LTL Example
 The LTL formula a holds for right hand side machine 

because all traces begin in state a.
 It does not hold for left hand side machine because 

there exists at least one trace that doesn’t start in 
state a

 The LTL formula x => y holds for both machines 
because if x is present, then y will be present.
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 The LTL formula y is false for 
both FSMs because there is a 
counterexample where x is 
absent in the first reaction.
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LTL Formulas
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G Operator
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 Globally Φ: 

 Example: G(x =>y) is true for all traces of the right hand 
side machine, and hence holds for the machine.

 G(x Λ y) does not hold for the machine, because it is false 
for any trace where x is absent in any reaction.
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F Operator
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 Finally Φ or eventually Φ: 
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F Operator Examples
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 G(x => Fb) holds for both machines:
 If x is present in any reaction, then the machine will eventually 

be in state b.
 True even in suffixes that start in state a.

 Parentheses (order) can be important in interpreting an LTL 
formula:
 (Gx) => (Fb) is trivially true because Fb is true for all traces

 F¬Φ holds if and only if ¬GΦ:
 (Φ is eventually false) = (Φ is not always true)
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F Operator Examples (Continued)
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 Does G(x => Fy) hold for this machine?
 No because there is a counterexample in which y is not 

present even though x is present.
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X Operator
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 Next state Φ: 
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X Operator Examples

22

 x => Xa holds for the left side state machine:
 If x is present in the first reaction, then the next state will be 

a.

 G(x => Xa) does not hold for the same state 
machine:
 It does not hold for any suffix that begins in state a.

 G(b => Xa) holds for the right side state 
machine.
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U Operator
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 Until operator: 
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U Operator Examples
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 For the right side machine, aUx is true for any 
trace for which Fx holds.

 Since this does not include all traces, aUx does 
not hold for the state machine.
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What do these mean?
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 G F p:
 p holds infinitely often

 F G p:
 Eventually, p holds henceforth (steady state)

 G(p=> F q):
 Every p is eventually followed by a q (request-

response)

 F(p=> (XXq)):
 If p occurs, then on some occurrence it is 

followed by a q two reactions later
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Operator Relationships
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 Can one express GΦ purely in terms of F, 
p, and Boolean operators?
 Yes: GΦ = ¬F¬Φ

 How about F in terms of U?
 FΦ = true U Φ

 What about X in terms of G, F, or U?
 Cannot be done!
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Invariants
 An invariant is a property that holds for a system 

if it remains true at all times during operation of 
the system.
 An invariant holds for a system if it is true in the initial 

state of the system, and it remains true as the system 
evolves, after every reaction, in every state.

 Example: In the model of a traffic light controller, 
there is no pedestrian crossing when the traffic 
light is green.

 This property must always remain true of this 
system, and hence is a system invariant.
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Invariants (Continued)
 Invariant properties must include both 

software and hardware aspects of an 
embedded system
 Software:

 Correct programming style
 Deadlock prevention in mutexes
 Input data restrictions
 etc.

 Hardware:
 Timing requirements
 Data settlement issues
 etc.
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Homework Assignments
 Chapter 13:

 Mandatory: 2, 4
 Due date Tuesday 1404/2/30

 The rest optional
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