
Embedded Systems Design and Modeling 1

Embedded Systems 
Design and Modeling

Chapter 13
Invariants and Temporal Logic



Embedded Systems Design and Modeling

Correctness Definition
 Question: when is a design of a system “correct”?
 Answer: a design is correct when it meets its 

specification (requirements) in its operating 
environment

 Quotation: “A design without specification cannot 
be right or wrong, it can only be surprising!”

 To verify correctness, simply running a few tests 
is not enough!

 Many embedded systems are deployed in safety-
critical applications (avionics, automotive, 
medical, …) and require rigorous verification

2



Embedded Systems Design and Modeling

Examples From History

3



Embedded Systems Design and Modeling

Basic Definitions
 Specification:

 A precise mathematical statement of the 
design objective (desired properties of the 
system)

 Verification:
 Does the designed system achieve its 

objectives in the operating environment?

 Controller Synthesis:
 Given an incomplete design, a strategy to 

complete the system so that it achieves its 
objectives in the operating environment

4



Embedded Systems Design and Modeling

Model-Based Design & Verification

5

 Requires a precise and unambiguous way 
to write models and specifications so that 
an algorithm can process it



Embedded Systems Design and Modeling

Natural Language Deficiency
 Can natural languages satisfy this requirement?
 Generally no, due to their inherent ambiguities!
 Example: Specification of the SpaceWire Protocol 

(European Space Agency standard)

6

Note: The exact timing of this 
state is not specified clearly.



Embedded Systems Design and Modeling

Another Example
 Recall our previous example of 

mutual exclusion in a 
multithread system

 States and/or transitions 
represent atomic instructions

 Sample possible specifications 
described in a natural 
language:

7

 The 2-threaded program should never be in state 
(C1,C2)

 Thread 1 must eventually reach D1 and thread 2 
must eventually reach D2



Embedded Systems Design and Modeling

Motivational Observations
 Need a formal (mathematical) way (language) to 

specify the system.
 Various “logics” (mathematical languages) have 

been proposed to address this need.
 A mathematical specification only includes 

properties that the system must or must not 
have.

 It requires human judgment to decide whether 
that specification constitutes “correctness”.

 Getting the specification right is often as hard as 
getting the design right!

8



Embedded Systems Design and Modeling

Temporal Logic
 A precise mathematical description to 

express properties of a system over time
 E.g., Behavior of an FSM or Hybrid System
 “Temporal” emphasizes the time aspect

 Many flavors of temporal logic:
 Propositional temporal logic
 Linear temporal logic
 Real-time temporal logic, etc.

 ACM Turing Award was given for the idea 
of using temporal logic for specification

9



Embedded Systems Design and Modeling

Propositional Temporal Logic
 Proposition: a statement about the inputs, 

outputs, or states of a system
 Can be seen as expressions with true or 

false values
 Atomic (smallest) proposition: fine-

grained statements with as few as one 
single input or output or state

 A propositional logic formula (or simply a 
proposition) is a more elaborate 
combination of atomic propositions

10



Embedded Systems Design and Modeling

Atomic Propositions Example

11



Embedded Systems Design and Modeling

Propositions Example

12



Embedded Systems Design and Modeling

Execution Traces

13



Embedded Systems Design and Modeling

Linear Temporal Logic
 LTL formula: applies to an entire trace instead of just one 

single element:
 q0, q1, q2, …

 If p is a proposition, then by definition, we say that LTL 
formula Φ = p holds for the trace q0, q1, q2, … if and only 
if p is true for q0.

 This may seem odd, but will provide temporal logic 
operators ways to reason about the entire trace.

 By convention, LTL formulas are denoted as Φ, Φ1, Φ2, etc. 
and propositions as p, p1, p2, etc.

 Given a state machine M and an LTL formula Φ, we say that 
Φ holds for M if Φ holds for all possible traces of M.
 This typically requires considering all possible input combinations

14



Embedded Systems Design and Modeling

LTL Example
 The LTL formula a holds for right hand side machine 

because all traces begin in state a.
 It does not hold for left hand side machine because 

there exists at least one trace that doesn’t start in 
state a

 The LTL formula x => y holds for both machines 
because if x is present, then y will be present.

15

 The LTL formula y is false for 
both FSMs because there is a 
counterexample where x is 
absent in the first reaction.



Embedded Systems Design and Modeling

LTL Formulas

16



Embedded Systems Design and Modeling

G Operator

17

 Globally Φ: 

 Example: G(x =>y) is true for all traces of the right hand 
side machine, and hence holds for the machine.

 G(x Λ y) does not hold for the machine, because it is false 
for any trace where x is absent in any reaction.



Embedded Systems Design and Modeling

F Operator

18

 Finally Φ or eventually Φ: 



Embedded Systems Design and Modeling

F Operator Examples

19

 G(x => Fb) holds for both machines:
 If x is present in any reaction, then the machine will eventually 

be in state b.
 True even in suffixes that start in state a.

 Parentheses (order) can be important in interpreting an LTL 
formula:
 (Gx) => (Fb) is trivially true because Fb is true for all traces

 F¬Φ holds if and only if ¬GΦ:
 (Φ is eventually false) = (Φ is not always true)



Embedded Systems Design and Modeling

F Operator Examples (Continued)

20

 Does G(x => Fy) hold for this machine?
 No because there is a counterexample in which y is not 

present even though x is present.



Embedded Systems Design and Modeling

X Operator

21

 Next state Φ: 



Embedded Systems Design and Modeling

X Operator Examples

22

 x => Xa holds for the left side state machine:
 If x is present in the first reaction, then the next state will be 

a.

 G(x => Xa) does not hold for the same state 
machine:
 It does not hold for any suffix that begins in state a.

 G(b => Xa) holds for the right side state 
machine.



Embedded Systems Design and Modeling

U Operator

23

 Until operator: 



Embedded Systems Design and Modeling

U Operator Examples

24

 For the right side machine, aUx is true for any 
trace for which Fx holds.

 Since this does not include all traces, aUx does 
not hold for the state machine.



Embedded Systems Design and Modeling

What do these mean?

25

 G F p:
 p holds infinitely often

 F G p:
 Eventually, p holds henceforth (steady state)

 G(p=> F q):
 Every p is eventually followed by a q (request-

response)

 F(p=> (XXq)):
 If p occurs, then on some occurrence it is 

followed by a q two reactions later



Embedded Systems Design and Modeling

Operator Relationships

26

 Can one express GΦ purely in terms of F, 
p, and Boolean operators?
 Yes: GΦ = ¬F¬Φ

 How about F in terms of U?
 FΦ = true U Φ

 What about X in terms of G, F, or U?
 Cannot be done!



Embedded Systems Design and Modeling

Invariants
 An invariant is a property that holds for a system 

if it remains true at all times during operation of 
the system.
 An invariant holds for a system if it is true in the initial 

state of the system, and it remains true as the system 
evolves, after every reaction, in every state.

 Example: In the model of a traffic light controller, 
there is no pedestrian crossing when the traffic 
light is green.

 This property must always remain true of this 
system, and hence is a system invariant.

27



Embedded Systems Design and Modeling

Invariants (Continued)
 Invariant properties must include both 

software and hardware aspects of an 
embedded system
 Software:

 Correct programming style
 Deadlock prevention in mutexes
 Input data restrictions
 etc.

 Hardware:
 Timing requirements
 Data settlement issues
 etc.

28



Embedded Systems Design and Modeling

Homework Assignments
 Chapter 13:

 Mandatory: 2, 4
 Due date Tuesday 1404/2/30

 The rest optional

29


